Indonesian Journal of Artificial Intelligence and Data Mining
Vol 7, No 1 (2024): March 2024

Early Prediction of Stroke Disease Diagnosis Patients Using Data Mining Algorithm Comparison

Subarkah, Pungkas (Unknown)
Damayanti, Wenti Risma (Unknown)
Sabaniyah, Arbangi Puput (Unknown)



Article Info

Publish Date
30 Nov 2023

Abstract

Stroke constitutes a medical emergency of paramount significance, characterized by a notably elevated mortality rate, and stands as the foremost cause of mortality within hospital settings. The dataset employed for this analysis is sourced from Kaggle, denoted as the Brain Stroke Dataset, encompassing a total of 4981 records. This research aims to carry out early prediction of stroke sufferers using several algorithms including the ANN algorithm, CART, KNN, and the NBC algorithm. The results obtained in the ANN algorithm obtained an accuracy of 93.53%, in the CART algorithm of 95.02%, in the KNN algorithm of 91.09% and in the NBC algorithm of 88.44%. With the outcomes of this research, the use of the cart set of rules may be used for early evaluation of stroke sufferers because it has a good degree of accuracy and is listed inside the excellent type kind

Copyrights © 2024






Journal Info

Abbrev

IJAIDM

Publisher

Subject

Computer Science & IT

Description

Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM) is an electronic periodical publication published by Puzzle Research Data Technology (Predatech) Faculty of Science and Technology UIN Sultan Syarif Kasim Riau, Indonesia. IJAIDM provides online media to publish scientific ...