Jurnal Teknik Informatika
Vol. 4 No. 1 (2024)

Klasifikasi Penyakit Jantung Menggunakan Decision Tree dan KNN Menggunakan Ektraksi Fitur PCA

Dewi Nasien (Unknown)
Sirvan, Sirvan (Unknown)
Deny, Deny (Unknown)
Ryan Syahputra, Ryan Syahputra (Unknown)
Akbar Marunduri, Alberta (Unknown)
Prawinata See, Richardo (Unknown)



Article Info

Publish Date
18 Feb 2024

Abstract

Penyakit jantung, yang merupakan penyebab utama kematian, menjadi fokus penanganan dan pembiayaan BPJS Kesehatan. Untuk upaya preventif, prediksi penyakit jantung pada pasien menjadi langkah penting. Dalam penelitian ini, proses klasifikasi dilakukan menggunakan dua metode, yaitu decision tree dan KNN, untuk memprediksi penyakit jantung. Metode decision tree dan KNN merupakan pendekatan yang umum digunakan dalam klasifikasi penyakit jantung. Decision tree membangun model keputusan berbasis pohon, sedangkan KNN menggabungkan beberapa decision tree untuk meningkatkan kinerja dan kestabilan prediksi. Hasil evaluasi performa kedua metode dapat memberikan pandangan yang komprehensif tentang keefektifan masing-masing dalam memprediksi penyakit jantung pada dataset yang digunakan. Metrik evaluasi seperti akurasi, precision, recall, dan F1 score akan memberikan informasi tentang sejauh mana model mampu mengklasifikasikan data dengan benar dan mengidentifikasi kasus penyakit jantung dengan baik

Copyrights © 2024






Journal Info

Abbrev

JEKIN

Publisher

Subject

Computer Science & IT

Description

JEKIN-Jurnal Teknik Informatika: diterbitkan tiga kali setahun pada bulan Maret, Juli, dan November oleh Yayasan Rahmatan Fiddunya Wal Akhirah untuk membantu akademisi, peneliti, dan praktisi dalam mensosialisasikan hasil penelitiannya. Tujuan Jurnal JEKIN adalah untuk mempublikasikan ...