Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 8 No 1 (2024): February 2024

Kmeans-SMOTE Integration for Handling Imbalance Data in Classifying Financial Distress Companies using SVM and Naïve Bayes

Maulana, Didit Johar (Unknown)
Siti Saadah (Unknown)
Prasti Eko Yunanto (Unknown)



Article Info

Publish Date
07 Feb 2024

Abstract

Imbalanced data presents significant challenges in machine learning, leading to biased classification outcomes that favor the majority class. This issue is especially pronounced in the classification of financial distress, where data imbalance is common due to the scarcity of such instances in real-world datasets. This study aims to mitigate data imbalance in financial distress companies using the Kmeans-SMOTE method by combining Kmeans clustering and the synthetic minority oversampling technique (SMOTE). Various classification approaches, including Nave Bayes and support vector machine (SVM), are implemented on a Kaggle financial distress data set to evaluate the effectiveness of Kmeans-SMOTE. Experimental results show that SVM outperforms Nave Bayes with impressive accuracy (99.1%), f1-score (99.1%), area under precision recall (AUPRC) (99.1%), and geometric mean (Gmean) (98.1%). On the basis of these results, Kmeans-SMOTE can balance the data effectively, leading to a quite significant improvement in performance.

Copyrights © 2024






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...