Journal of Advanced Computer Knowledge and Algorithms
Vol 1, No 1 (2024): Journal of Advanced Computer Knowledge and Algorithms - January 2024

Comparison of the Results of the K-Nearest Neighbor (KNN) and Naïve Bayes Methods in the Classification of ISPA Diseases (Case Study: RSUD Fauziah Bireuen)

Putri, Riska Yolanda (Unknown)
Yunizar, Zara (Unknown)
Safwandi, Safwandi (Unknown)



Article Info

Publish Date
01 Jan 2024

Abstract

Acute Respiratory Infection or commonly called (ARI) is a disease caused by bacteria or viruses. (ARI) can attack all ages, especially children. This study aims to compare the accuracy of classification in (ARI) disease. The data used is data from patients affected by (ARI) disease at Fauziah Bireuen Hospital. K-Nearest Neighbors and Naïve Bayes can be used in the classification of (ARI) diseases. Measurement of accuracy using Confusion Matrix in the K-Nearest Neighbors method with the Eulidean Distance approach in the case of (ARI) disease classification obtained a percentage of precision of 91%, recall 84% and accuracy of 88%. While the Naïve Bayes method obtained a percentage of precision of 95%, recall 78% and accuracy of 86%. The results of the accuracy comparison of the two methods show that the K-Nearest Neighbors method has a higher accuracy rate than the Naïve Bayes method.

Copyrights © 2024






Journal Info

Abbrev

jacka

Publisher

Subject

Computer Science & IT

Description

JACKA journal published by the Informatics Engineering Program, Faculty of Engineering, Universitas Malikussaleh to accommodate the scientific writings of the ideas or studies related to informatics science. JACKA journal published many related subjects on informatics science such as (but not ...