This research investigates the performance of various machine learning models in developing an Intrusion Detection System (IDS) for the complex and evolving security landscape of Internet of Things (IoT) networks. Employing the RT-IoT2022 dataset, which captures a diverse array of IoT devices and attack methodologies, we meticulously evaluated four prominent models: Gradient Boosting, Random Forest, Logistic Regression, and Multi-Layer Perceptron (MLP). Our results indicate that both Gradient Boosting and Random Forest achieved perfect scores with an accuracy, precision, recall, and F1 score of 1.00, suggesting their superior ability to classify and predict security incidents within the dataset. Logistic Regression demonstrated commendable consistency with scores of 0.96 across all metrics, proposing a balance between model complexity and performance. The MLP model closely followed, with an accuracy, precision, recall, and F1 score of 0.99, highlighting its potential in capturing complex, nonlinear data relationships. These findings underscore the critical role of machine learning in fortifying IoT networks against cyber threats and the need for continuous model evaluation against real-world data. The study provides a pathway for future research to refine these IDS models for operational efficiency and sustainability in the dynamic IoT security domain. 
                        
                        
                        
                        
                            
                                Copyrights © 2024