Jurnal Informatika Polinema (JIP)
Vol. 9 No. 4 (2023): Vol. 9 No. 4 (2023)

PENERAPAN MWMOTE UNTUK MENGATASI KETIDAKSEIMBANGAN KELAS PADA KLASIFIKASI RISIKO KREDIT

Maria Ulfah (Unknown)
Triando Hamonangan Saragih (Unknown)
Dwi Kartini (Unknown)
Muhammad Itqan Mazdadi (Unknown)
Friska Abadi (Unknown)



Article Info

Publish Date
22 Aug 2023

Abstract

Salah satu bentuk usaha yang dijalankan oleh perbankan adalah pemberian kredit terhadap nasabaah. Bank akan selalu berusaha mengoptimalkan penyaluran kredit terhadap nasabah, akan tetapi tidak menutup kemungkinan bahwa kredit yang diberikan tersebut memiliki risiko. Guna menekan dan meminimalisir risiko kredit pihak bank perlu melakukan analisis terhadap data yang dimiliki nasabah agar dapat mengambil keputusan apakah nasabah atau calon debitur layak diberikan pinjaman dalam bentuk kredit. Salah satu cara untuk menyelesaikan masalah analisa risiko kredit adalah dengan melakukan klasifikasi dengan menggunakan machine learning. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta oversampling data dengan menggunakan MWMOTE dan Improve MWMOTE. Data yang digunakan pada penelitian ini adalah data german credit risk yang memiliki Kelas bad credit yang terdiri atas 300 data dan kelas good credit terdiri atas 700 data. Penelitian dilakukan dengan membandingkan klasifikasi SVM dengan dan tanpa oversampling. Hasilnya didapatkan bahwa nilai akurasi dari klasifikasi Improve MWMOTE SVM memiliki nilai tertinggi jika dibandingan dengan SVM MWMOTE, dan SVM yaitu sebesar 77,95%.

Copyrights © 2023






Journal Info

Abbrev

jip

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Library & Information Science

Description

The focus and scope of articles published in JIP (Journal of Informatics Polinema) encompasses the game technology, information system, computer network, computing, which covers the following scope: Game Technology Artificial Intelligence Intelligent System Machine Learning Image Processing Computer ...