G-Tech : Jurnal Teknologi Terapan
Vol 8 No 2 (2024): G-Tech, Vol. 8 No. 2 April 2024

Ensemble Learning Approach Reveals Significant Clinical Attributes from Real-World Breast Cancer Cases

Angga Aditya Permana (Universitas Multimedia Nusantara, Indonesia)
Muhammad Fahrury Romdendine (Universitas Multimedia Nusantara, Indonesia)



Article Info

Publish Date
02 Apr 2024

Abstract

Breast cancer has become on of the leading causes of death in Indonesia. This study contributes to global efforts to combat breast cancer by improving patient outcome prediction accuracy. This study employed ensemble learning techniques such as Random Forest, XGBoost, and LightGBM. The results of the study demonstrates LightGBM's superior performance (accuracy=85%, ROC-AUC=81%, AUPR=85%). Notably, all three algorithms identify key clinical attributes: "Relapse Free Status (Months)", "Overall Survival (Months)", "Nottingham Prognostic Index", and "Lymph Nodes Examined Positive". LightGBM uniquely highlights "pam50_LumA" as significant, suggesting reduced fatality risk for Luminal A subtype patients, while others prioritize "Tumor Size". This research lays groundwork for intelligent systems to predict breast cancer outcomes, potentially transforming patient care and clinical practice.

Copyrights © 2024






Journal Info

Abbrev

g-tech

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Energy Engineering

Description

Jurnal G-Tech bertujuan untuk mempublikasikan hasil penelitian asli dan review hasil penelitian tentang teknologi dan terapan pada ruang lingkup keteknikan meliputi teknik mesin, teknik elektro, teknik informatika, sistem informasi, agroteknologi, ...