Indonesian Journal of Electrical Engineering and Computer Science
Vol 32, No 3: December 2023

Characteristic of graphene-based thick film gas sensor for ethanol and acetone vapor detection at room temperature

Siti Amaniah Mohd Chachuli (Faculty of Electronics and Computer Technology and Engineering, Universiti Teknikal Malaysia Melaka)
Muhammad Luqman Hakkim Noor (Faculty of Electronics and Computer Technology and Engineering, Universiti Teknikal Malaysia Melaka)
Omer Coban (Engineering Faculty, Ataturk University)
Nur Hazahsha Shamsudin (Faculty of Technology and Electrical Engineering, UniversityTeknikal Malaysia Melaka)
Muhammad Idzdihar Idris (Faculty of Electronics and Computer Technology and Engineering, Universiti Teknikal Malaysia Melaka)



Article Info

Publish Date
01 Dec 2023

Abstract

Ethanol and acetone are volatile organic compound gases widely used in food processing. Health problems such as irritation of the eyes, nose, and throat can affect human health if exposed to these gases. Two graphene gas sensors were fabricated using a screen-printing technique onto a glass substrate to compare their performance to the acetone and ethanol vapors at room temperature. The graphene paste was prepared by mixing 95 wt.% of the binder with 5 wt.% of graphene nanoflakes. A silver paste was used asthe interdigitated electrode of the gas sensor and becamethe first layer of the gas sensor. The silver paste was deposited on the glass substrate using a screen-printing technique and fired at 150°C for 15 minutes. Next, the graphene paste was depositedonto the interdigitated electrode using a screen-printing technique and becamethe second layer of the gas sensor. The graphene was annealed at 200°C for 30 minutes. Both graphene gas sensors responded well to ethanol and acetone vapor with an n-typed gas sensor at room temperature. As a comparison, the graphene gas sensor showed better characteristics in terms of response and recovery characteristicsto ethanol vapor than acetone vapor at room temperature. The response and response time of the graphene-based thick film gas sensor to ethanol were approximately 21.89 and 24.08, respectively.

Copyrights © 2023