Indonesian Journal of Electrical Engineering and Computer Science
Vol 33, No 3: March 2024

The effect of contact pressure on photoplethysmography

Xin Gong (Chongqing University of Technology)
Chengbo Yu (Chongqing University of Technology)
Yiguo Xuan (Chongqing University of Technology)



Article Info

Publish Date
01 Mar 2024

Abstract

In the bioinformation photoplethysmography (PPG) measurement, the precision and repeatability could be impacted by the contact pressure between the optical sensor and the measurement site. Taking the finger’s geometrical, mechanical, and optical characteristics into consideration, finite element models and Monte Carlo (MC) simulation methods were used to quantitatively analyze the effects of the deformation of different finger layers under contact pressure on its optical parameters and PPG signals during fingertip spectroscopic detection. Firstly, a 3D axisymmetric finger model was established, pelican optimization was used to find the parameter lamp that caused the simulation to best match the finger pressing behavior, modeled the deformation of each layer, and quantified the changes in their absorption and scattering coefficient. Then, before and after pressure application, photon propagation in the reflectance and transmittance modalities within the diastolic and systolic finger tissues at 660 nm and 940 nm were studied by MC simulation. The result shows that contact pressure significantly altered the thickness of the dermis and subcutaneous tissues, a decrease in tissue thickness caused an increase in optical coefficient, which resulted in a reduction in normalized pulsatile reflectance and a boost in transmittance, and the change was dependent on wavelength.

Copyrights © 2024