Journal La Multiapp
Vol. 5 No. 1 (2024): Journal La Multiapp

Custom Object Detection Using Transfer Learning with Pretrained Models for Improved Detection Techniques

Mtasher, Ashwaq Katham (Unknown)
Al-wakel, Esraa Hassan Jawad (Unknown)



Article Info

Publish Date
02 Feb 2024

Abstract

Custom object detection plays a vital role in computer vision applications. However, developing an accurate and efficient custom object detector requires a substantial amount of labeled training data and significant computational resources. In this research, we propose a custom object detection framework that leverages transfer learning with pre-trained models to improve detection tech-niques.The framework first utilizes a pre-trained deep learning model, such as ResNet or VGGNet, as a feature extractor. The pre-trained model is trained on a large-scale dataset, enabling it to learn high-level features from various objects. By reusing the pre-trained model's convolutional layers, we effectively capture generic features that can be transferred to the custom object detection task.Experimental evaluations on benchmark datasets demonstrate the effectiveness of our ap-proach. The custom object detector achieved superior detection performance compared to tradi-tional methods, especially when the target objects have limited training data. Additionally, our framework significantly reduces the amount of training time and computational resources required, as it leverages pre-trained models as a starting point.

Copyrights © 2024






Journal Info

Abbrev

JournalLaMultiapp

Publisher

Subject

Aerospace Engineering Automotive Engineering Chemical Engineering, Chemistry & Bioengineering Civil Engineering, Building, Construction & Architecture Engineering

Description

International Journal La Multiapp peer reviewed, open access Academic and Research Journal which publishes Original Research Articles and Review Article, editorial comments etc in all fields of Engineering, Technology, Applied Sciences including Engineering, Technology, Computer Sciences, Architect, ...