JOIV : International Journal on Informatics Visualization
Vol 8, No 2 (2024)

Rainfall-Runoff Modeling Using Artificial Neural Network for Batu Pahat River Basin

Zulkiflee, Nurul Najihah (Unknown)
Mohd Safar, Noor Zuraidin (Unknown)
Kamaludin, Hazalila (Unknown)
Jofri, Muhamad Hanif (Unknown)
Kamarudin, Noraziahtulhidayu (Unknown)
Rasyidah, - (Unknown)



Article Info

Publish Date
31 May 2024

Abstract

This research delves into the effectiveness of Artificial Neural Networks with Multilayer Perceptron (ANN-MLP) and Nonlinear AutoRegressive with eXogenous inputs (NARX) models in predicting short-term rainfall-runoff patterns in the Batu Pahat River Basin. This study aims to predict river water levels using historical rainfall and river level data for future intervals of 1, 3, and 6 hours. Data preprocessing techniques, including the management of missing values, identification of outliers, and reduction of noise, were applied to enhance the accuracy and dependability of the models. This study assessed the performance of the models for ANN-MLP and NARX by comparing their effectiveness across various forecast timeframes and evaluating their performance in different scenarios. The findings of the study revealed that the ANN-MLP model showed robust performance in short-term prediction. On the contrary, the NARX model exhibited higher accuracy, particularly in capturing intricate temporal relationships and external impacts on river behavior. The ANN-MLP produces 99% accuracy for 1-hour prediction, and NARX yields 98% accuracy with 0.3245 Root Mean Squared Error and 0.1967 Mean Absolute Error. This study makes a valuable contribution to hydrological forecasting by presenting a rigorous and precise modeling methodology.

Copyrights © 2024






Journal Info

Abbrev

joiv

Publisher

Subject

Computer Science & IT

Description

JOIV : International Journal on Informatics Visualization is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of Computer Science, Computer Engineering, Information Technology and Visualization. The journal publishes state-of-art ...