Calcium (Ca) is a vital macronutrient required by the body. An inadequate calcium intake may result in bone health issues. One source of calcium is the red snapper fish bone waste. The optimal absorption of calcium in the body occurs when it is present in a minute form, especially in the form of nanocalcium.The primary objective of this study was to establish the optimal extraction time for generating nanocalcium from red snapper fishbone flour, taking into account the moisture content, particle size, and yield. The extraction of nanocalcium from red snapper fish bone flour was accomplished using a solution of NaOH 1N (1:3) with extraction times of 30, 60, and 90 min. The chemical composition, yield, particle size, calcium, and phosphorus content of red snapper fish bone flour were assessed.The analysis of red snapper fish bone nanocalcium included evaluations of moisture content, particle size, yield, and nanokalsium structure. The particle size was determined using a Particle Size Analyzer (PSA), whereas the nanocalcium structure was examined using a Scanning Electron Microscope (SEM). The data obtained from the research revealed that the red snapper fish bone flour had a yield of 85.57%, particle size of 1,029.69 nm, moisture content of 5.52%, ash content of 78.82%, protein content of 18.11%, fat content of 2.02%, calcium content of 20.07%, and phosphorus content of 9.95%. The most effective treatment for producing nanocalcium from red snapper fish bones with a moisture content of 3.63%, yield of 6.94%, and particle size of 440.3 nm is the 90-minute extraction process.
Copyrights © 2024