Jurnal Riset Informatika
Vol. 6 No. 3 (2024): June 2024

Comparison of the Application of Linear Regression with Sliding Window Validation and K-Fold Cross-Validation for Forecasting Covid-19 Recovered Cases

Setiyorini, Tyas (Unknown)
Frieyadie, Frieyadie (Unknown)



Article Info

Publish Date
15 Jun 2024

Abstract

The increase in confirmed cases and deaths due to Covid-10 continues to spread and increase day by day throughout the world. This has resulted in a world health crisis that impacts all sectors of life. The government declared a movement to suppress the spread of Covid-19, so it is necessary to understand the pattern of Covid-19 problems. Researchers contribute scientifically to finding patterns of death or recovery due to COVID-19 by applying Machine Learning methods. The Linear Regression and Sliding Window preprocessing methods are appropriate for forecasting time series data. This research obtained RMSE results at 0.320 with linear regression with sliding window validation and RMSE at 0.320 with linear regression with K-Fold cross-validation. This proves that Linear Regression with Sliding Window Validation can improve performance much better than k-fold cross-validation in forecasting COVID-19 recovery cases in China. The sliding window validation method has been proven to increase accuracy for forecasting with time series data compared to other standard preprocessing methods, namely K-Fold cross-validation. In the future, further research is needed to test different types of time series data by comparing the application of sliding window validation and K-Fold cross-validation or developing other validation models.

Copyrights © 2024






Journal Info

Abbrev

jri

Publisher

Subject

Computer Science & IT

Description

Jurnal Riset Informatika, merupakan Jurnal yang diterbitkan oleh Kresnamedia Publisher. Jurnal Riset Informatika, berawal diperuntukan menampung paper-paper ilmiah yang dibuat oleh peneliti dan dosen-dosen program studi Sistem Informasi dan Teknik ...