Jurnal Teknik Informatika (JUTIF)
Vol. 5 No. 4 (2024): JUTIF Volume 5, Number 4, August 2024

COMPARISON OF K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE ALGORITHM OPTIMIZATION WITH GRID SEARCH CV ON STROKE PREDICTION

Aprilliandhika, Wahyu (Unknown)
Abdulloh, Ferian Fauzi (Unknown)



Article Info

Publish Date
24 Jul 2024

Abstract

Stroke ranks second as the leading cause of death globally, with disability being the primary accompanying factor. The cause of death in stroke patients is due to the lack of an optimal stroke prediction system; therefore, identifying whether a patient is experiencing a stroke or not becomes the focus of this research. Thus, the objective of this study is to compare the performance of stroke prediction using two classification models, namely K-Nearest Neighbors (KNN) and Support Vector Machine (SVM), with and without using the GridSearchCV optimization technique. In this experiment, the dataset is processed and divided into training and testing data using the SMOTE oversampling technique. Initial testing is conducted without GridSearchCV. The results of the initial testing show that the KNN model performs better than SVM, with accuracies of 91% and 83%, respectively. After optimizing parameters using GridSearchCV, both models experience a significant performance improvement. The KNN model increases accuracy to 95% with precision of 91% and recall of 98%, while the SVM model increases accuracy to 94% with precision of 90% and recall of 99%. These results indicate that using GridSearchCV to optimize parameters of KNN and SVM models can significantly enhance stroke prediction performance. There are differences in precision and recall between KNN and SVM. The KNN model tends to have higher recall, while the SVM model has higher precision, and for accuracy, the KNN algorithm outperforms SVM in stroke prediction.

Copyrights © 2024






Journal Info

Abbrev

jurnal

Publisher

Subject

Computer Science & IT

Description

Jurnal Teknik Informatika (JUTIF) is an Indonesian national journal, publishes high-quality research papers in the broad field of Informatics, Information Systems and Computer Science, which encompasses software engineering, information system development, computer systems, computer network, ...