TIERS Information Technology Journal
Vol. 4 No. 2 (2023)

Resampling Techniques in Rainfall Classification of Banjarbaru using Decision Tree Method

Selvi Annisa (Universitas Lambung Mangkurat)
Yeni Rahkmawati (Universitas Lambung Mangkurat)



Article Info

Publish Date
25 Dec 2023

Abstract

Continuous heavy rains, such as in 2021, can cause flood emergencies in various areas of Banjarbaru. Therefore, classification modeling is needed to predict rainfall classes based on climate parameters. The problem faced in the classification case is the unbalanced class distribution. Class imbalance occurs when the minority class is much smaller than the majority class. This research aims to compare three resampling techniques in handling imbalanced rainfall data in Banjarbaru using the Decision Tree model. The comparison methods used were sensitivity, specificity, and G-Mean values. In this research, the method used is a decision tree model with Random undersampling, Random Oversampling, and SMOTE. The result shows that the best model is the Decision tree model with the Random Undersampling technique because it provides the highest G-Mean value and sensitivity and specificity values above 70%. Based on this model, the variables that can separate the Rainy and Cloudy classes are Minimum temperature, Maximum temperature, and Sunshine duration, with the best separator being Maximum Temperature.

Copyrights © 2023






Journal Info

Abbrev

tiers

Publisher

Subject

Computer Science & IT

Description

TIERS Information Technology Journal memuat artikel Hasil Penelitian dan Studi Kepustakaan dari cabang Teknologi Informasi dengan bidang Sistem Informasi, Artificial Intelligence, Internet of Things, Big Data, e-commerce, Financial Technology, Business ...