Jurnal Informatika dan Teknik Elektro Terapan
Vol 12, No 1 (2024)

IDENTIFIKASI CITRA POSE TEGAK UNTUK PEMILIHAN ANGGOTA BARIS BERBARIS MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK DI SMK MUHAMMADIYAH MUNGKID

Bae toha (Universitas Mercubuana Yogyakarta)



Article Info

Publish Date
02 Jan 2024

Abstract

Penelitian ini membahas bagaimana penerapan metode CNN dapat digunakan untuk menciptakan sebuah sistem yang secara otomatis dan akurat mengidentifikasi pose berdiri tegak untuk baris berbaris. dengan menggunakan metode Convolutional Neural Network (CNN) yang merupakan metode klasifikasi yang sangat baik untuk menganalisis gambar digital. Desain CNN dibuat khusus untuk menganalisis objek dalam gambar, sehingga sangat berguna untuk klasifikasi gambar. Diharapkan dengan menggunakan metode ini bersama dengan data yang relevan, hasilnya adalah tingkat ketajaman dan efisiensi yang lebih tinggi. Penelitian ini menghasilkan sebuah sistem yang dapat mengidentifikasi pose tubuh  kurang tegak dengan akurasi sebesar 59% dengan confidence 58,54% dan mengidentifikasi pose tegak dengan akurasi sebesar 80% dengan confidence 79,36% berdasarkan gambar yang di upload

Copyrights © 2024






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...