JOIN (Jurnal Online Informatika)
Vol. 5 No 2 (2020)

Detection of Fraudulent Financial Statement based on Ratio Analysis in Indonesia Banking using Support Vector Machine

Sibaroni, Yuliant (Unknown)
Ekaputra, Muhammad Novario (Unknown)
Prasetiyowati, Sri Suryani (Unknown)



Article Info

Publish Date
03 Dec 2020

Abstract

This study proposes the use of ratio analysis-based features combined with the SVM classifier to identify fraudulent financial statements. The detection method used in this study applies a data mining classification approach. This method is expected to replace the expert in forensic accounting in identifying fraudulent financial statements that are usually done manually. The experimental results show that the proposed classifier model and ratio analysis-based features provide more than 90% accuracy results where the optimal number of features based on ratio analysis is 5 features, namely Capital Adequacy Ratio (CAR), (ANPB) to total earning assets and non-earning assets (ANP), Impairment provision on earning assets (CKPN) to earning assets, Return on Asset (ROA), and Return on Equity (ROE). The contribution of the study is to complement the research of fraudulent financial statements detection where the classifier method used here is different compare to other research. The selection of banking cases in Indonesia is also unique in this research which distinguishes it from other research because the financial reporting standards in each country can be different. 

Copyrights © 2020






Journal Info

Abbrev

join

Publisher

Subject

Computer Science & IT

Description

JOIN (Jurnal Online Informatika) is a scientific journal published by the Department of Informatics UIN Sunan Gunung Djati Bandung. This journal contains scientific papers from Academics, Researchers, and Practitioners about research on informatics. JOIN (Jurnal Online Informatika) is published ...