JOIN (Jurnal Online Informatika)
Vol 7 No 1 (2022)

Implementation of Apriori Algorithm for Music Genre Recommendation

Henry, Michael (Unknown)
Chandra, Wiryanata (Unknown)
Zahra, Amalia (Unknown)



Article Info

Publish Date
30 Jun 2022

Abstract

Music interest is diverse yet enticing to be a part of knowledge discovery. It influences how people feel, study, work, etc. A lot of things are to be considered in producing brand new music with its correlation to its genre. We have already collected the dataset that we can utilize in this research, which is the history of every song listened to by several users in a total of 20.000 records from a million song dataset. This study implements the Apriori algorithm which can handle a large amount of data while simplifying the data to create a recommendation system where the result is a pattern from the music genre according to the interests of each user with the help of the RapidMiner tool. The purpose of this research is that the pattern which has been found can become a reference for music producers in terms of making or distributing their brand-new music. The result of the best combination of genres states that listeners of the rock genre will also hear the pop genre with a combination frequency of 50, support value of 21.2%, and confidence value of 51%.

Copyrights © 2022






Journal Info

Abbrev

join

Publisher

Subject

Computer Science & IT

Description

JOIN (Jurnal Online Informatika) is a scientific journal published by the Department of Informatics UIN Sunan Gunung Djati Bandung. This journal contains scientific papers from Academics, Researchers, and Practitioners about research on informatics. JOIN (Jurnal Online Informatika) is published ...