Progresif: Jurnal Ilmiah Komputer
Vol 20, No 1: Februari 2024

Penerapan Text Mining Untuk Advertising Pada Data Tweets Zalora Indonesia Dengan Menggunakan Metode K-Means Clustering

Feybiola Agustine Andrea Ompo (Unknown)
Magdalena A. Ineke Pakereng (Universitas Kristen Satya Wacana)



Article Info

Publish Date
16 Feb 2024

Abstract

Zalora Indonesia is one of the online retail business people who use Twitter social media as a means to do advertising. The purpose of this study is to determine the type of tweets content that is widely liked and retweeted by Zalora Indonesia followers to advertise to Twitter users. The collection of tweets data is done by integrating the Twitter API and Python programming language. The data analysis method is carried out by utilizing 2 tools, namely the Python programming language for text preprocessing and Rapidminer for data processing using the K-Means algorithm. The results of the application of the K-Means algorithm are 4 clusters, including Zalora cashback (cluster 1), skincare and woman style (cluster 2), payday and shopping time (cluster 3), as well as holiday promos (cluster 4). Based on the calculation of the average number of likes and retweets in each cluster, the type of content with the most likes and retweets was obtained, namely regarding holiday promos (cluster 4). So that business people can take advantage of the like and retweet features as a means for advertising to Zalora Indonesia users.Kata kunci: Zalora Indonesia; Text Mining; Clustering; K-Means; Twitter AbstrakZalora Indonesia merupakan salah satu pelaku bisnis retail online yang menggunakan media sosial Twitter sebagai sarana untuk melakukan advertising. Tujuan dari penelitian ini yaitu untuk mengetahui jenis konten tweets yang banyak dilakukan likes dan retweet oleh followers Zalora Indonesia untuk melakukan advertising kepada pengguna Twitter. Pengumpulan data tweets dilakukan dengan mengintegrasikan Twitter API dan bahasa pemrograman Python. Metode analisis data dilakukan dengan memanfaatkan 2 tools yaitu bahasa pemrograman Python untuk proses text preprocessing serta Rapidminer untuk pengolahan data menggunakan algoritma K-Means. Hasil dari penerapan algoritma K-Means terdapat 4 klaster, diantaranya mengenai cashback zalora (cluster 1), skincare dan woman style (cluster 2), payday dan waktu belanja (cluster 3), serta promo hari raya (cluster 4). Berdasarkan perhitungan jumlah rata-rata like dan retweet pada tiap klaster, diperoleh jenis konten dengan like dan retweet terbanyak yaitu mengenai promo hari raya (cluster 4). Sehingga pelaku bisnis dapat memanfaatkan fitur like dan retweet sebagai sarana untuk advertising kepada pengguna Zalora Indonesia.Kata kunci: Zalora Indonesia; Text Mining; Clustering; K-Means; Twitter

Copyrights © 2024






Journal Info

Abbrev

progresif

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

Progresif: Jurnal Ilmiah Komputer adalah Jurnal Ilmiah bidang Komputer yang diterbitkan secara periodik dua nomor dalam satu tahun, yaitu pada bulan Februari dan Agustus. Redaksi Progresif: Jurnal Ilmiah Komputer menerima Artikel hasil penelitian atau atau artikel konseptual bidang ...