Journal of Multiscale Materials Informatics
Vol. 1 No. 1 (2024): April

Ensemble Learning Model in Predicting Corrosion Inhibition Capability of Pyridazine Compounds

Rachman, Dian Arif (Unknown)
Akrom, Muhamad (Unknown)



Article Info

Publish Date
04 Jul 2024

Abstract

Empirical studies of possible compound corrosion inhibitors require a lot of money, time, and resources. Therefore, we used a machine learning (ML) paradigm based on quantitative structure-property relationship (QSPR) models to evaluate ensemble algorithms as predictors of corrosion inhibition efficiency (CIE) values. Our investigation reveals that the gradient boosting (GB) regressor model outperforms other ensemble-based models. This advantage is evaluated objectively using the metrics root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). In summary, our research provides a new perspective on how well machine learning algorithms in particular ensembles work to identify organic molecules such as pyridazine that have the potential to prevent corrosion on the surfaces of metals such as iron and its alloys.

Copyrights © 2024






Journal Info

Abbrev

jimat

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Computer Science & IT Industrial & Manufacturing Engineering Materials Science & Nanotechnology

Description

Journal of Multiscale Materials Informatics (JIMAT) is a peer-reviewed, open-access, free of APC (until December 2025), and published 2 times (April and October) in one year. JIMAT is an interdisciplinary journal emphasis on cutting-edge research situated at the intersection of materials science and ...