Journal of Multiscale Materials Informatics
Vol. 1 No. 1 (2024): April

Comparison of Ridge and Kernel Ridge Models in Predicting Thermal Stability of Zn-MOF Catalysts

Trisnapradika, Gustina Alfa (Unknown)
Akrom, Muhamad (Unknown)



Article Info

Publish Date
04 Jul 2024

Abstract

This study investigates machine learning-based quantitative structure-property relationship (QSPR) models for predicting the thermal stability of zinc metal-organic frameworks (Zn-MOF). Utilizing a dataset comprising 151 Zn-MOF compounds with relevant molecular descriptors, ridge (R) and kernel ridge (KR) regression models were developed and evaluated. The results demonstrate that the R model outperforms the KR model in terms of prediction accuracy, with the R model exhibiting exceptional performance (R² = 0.999, RMSE = 0.0022). While achieving high accuracy, opportunities for further improvement exist through hyperparameter optimization and exploration of polynomial functions. This research underscores the potential of ML-based QSPR models in predicting the thermal stability of Zn-MOF compounds and highlights avenues for future investigation to enhance model accuracy and applicability in materials science.

Copyrights © 2024






Journal Info

Abbrev

jimat

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Computer Science & IT Industrial & Manufacturing Engineering Materials Science & Nanotechnology

Description

Journal of Multiscale Materials Informatics (JIMAT) is a peer-reviewed, open-access, free of APC (until December 2025), and published 2 times (April and October) in one year. JIMAT is an interdisciplinary journal emphasis on cutting-edge research situated at the intersection of materials science and ...