The 2024 Indonesian Vice Presidential Election Quick Count sparked diverse public reactions on X Twitter. The sheer volume and variety of expressed opinions complicate accurate sentiment identification and classification. This study aims to develop a text classification model using Support Vector Machine (SVM) to identify sentiment in election Quick Count-related tweets. Data was acquired through tweet collection, followed by pre-processing, word weighting using TF-IDF, and data splitting for model training and testing. Results indicated that the developed SVM model achieved 77.30% accuracy in tweet sentiment classification. The model's implementation is expected to aid in more effective information filtering and assist stakeholders in understanding public opinion more accurately.
Copyrights © 2024