Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika
Vol. 18 No. 2 (2024): Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Inform

METODE PEMBOBOTAN TF-IDF UNTUK KLASIFIKASI TEKS QUICK COUNT PEMILIHAN WAKIL PRESIDEN INDONESIA 2024 PADA X TWITTER DENGAN METODE SVM

Pranata, Ricky Albin (Unknown)
Rudiman, Rudiman (Unknown)
Azmi Verdikha, Naufal (Unknown)



Article Info

Publish Date
31 Aug 2024

Abstract

The 2024 Indonesian Vice Presidential Election Quick Count sparked diverse public reactions on X Twitter. The sheer volume and variety of expressed opinions complicate accurate sentiment identification and classification. This study aims to develop a text classification model using Support Vector Machine (SVM) to identify sentiment in election Quick Count-related tweets. Data was acquired through tweet collection, followed by pre-processing, word weighting using TF-IDF, and data splitting for model training and testing. Results indicated that the developed SVM model achieved 77.30% accuracy in tweet sentiment classification. The model's implementation is expected to aid in more effective information filtering and assist stakeholders in understanding public opinion more accurately.

Copyrights © 2024






Journal Info

Abbrev

JTI

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Engineering Library & Information Science

Description

Jurnal Teknologi Informasi (JTI) diterbitkan adalah Jurnal Jurusan Teknik Informatika Universitas Palangka Raya dengan ISSN 1907-896X, E-ISSN 2656-0321. Jurnal Teknologi Informasi (JTI) merupakan Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika yang menyajikan hasil penelitian yang fokus pada ...