The classification model has reached the realm of sentiment classification to analyze user sentiment in providing comments. this research aims to classify sentiment regarding the topic of moving the capital city of Indonesia using the Support Vector Machine (SVM) method with TF-IDF weighting. SVM has its own advantages, namely to overcome complex problems in SVM classification using the kernel function. the kernel functions to transform input data into a high dimensional feature space, allowing linear separation of data more easily. there are 3 sentiment categories in this study, namely Negative, Neutral and Positive sentiment. to determine these 3 categories, researchers used expert labelling services. the purpose of this study using the SVM method and TF-IDF feature extraction is to find out and analyze the accuracy results obtained in processing sentiment data regarding the transfer of the capital city of Indonesia. The accuracy results obtained are 64%, this shows that the SVM method with TF-IDF weighting is able to classify sentiment data with fairly good results.
Copyrights © 2024