Control Systems and Optimization Letters
Vol 1, No 2 (2023)

Center of Pressure Control for Balancing Humanoid Dance Robot Using Load Cell Sensor, Kalman Filter and PID Controller

Cisi Fitri Wulandari (Universitas Ahmad Dahlan)
Abdul Fadlil (Universitas Ahmad Dahlan)



Article Info

Publish Date
29 May 2023

Abstract

Balance control on the Lanage Jagad humanoid dance robot is one of the means to create flexible dance movements in the robot movement system to make it more stable and can reduce the frequency of the robot falling or being unable to maintain balance when performing the dance. For the position of the robot, it can use a weight sensor or load cell sensor, the sensor measures the resistance value that can control the weight of 4 weight points on each robot leg which will later be converted into a pressure value at each point, in the study. This test was carried out with the same control behavior using an inertial sensor MPU6050. The balance on the robot uses a balance based on a load cell, which is a situation where the position of the robot in coordinates approaches the center of balance or CoP (Center of Pressure) at coordinates (0,0) or if using MPU6050 it is in a far error value condition so that it can balance the conditions so as not to falls close to the value of the robot state based on ZMP (Zero Moment Point) and CoG (Central of Gravity) as the MPU6050 sensor placement. In this study, for the balance control system using the Arduino MEGA 2560 PRO Board as a complement to the OpenCM 9.04 microcontroller, using 8 load cell sensors to determine the balance point which has been made predictions of pressure from the load cell using a kalman filter also PID control to handle the servo motor. The results from the center point of the robot's pressure have succeeded in determining the center of balance or CoP based on the X coordinates of 0 and the Y coordinates of 0 and the quadrant direction based on the center of gravity, so that the results of the balance system in standing and dancing conditions are based on the center of balance using a load cell, the success rate when standing by 87.5% and balance when dancing by 89%.

Copyrights © 2023






Journal Info

Abbrev

csol

Publisher

Subject

Aerospace Engineering Automotive Engineering Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

Control Systems and Optimization Letters is an open-access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of control and optimization, rapidly enabling a safe and sustainable interconnected human society. Control Systems and Optimization Letters ...