Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI)
Vol 7 No 1 (2024): Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI)

Perbandingan Algoritma KNN (K-Nearest Neighbors), Naïve Bayes, Dan SVM (Support Vector Machine) Untuk Klasifikasi Pemberian Pinjaman Nasabah

zairi saputra (STMIK Amik Riau)
H A Supahri (STMIK Amik Riau)
R Ismanizan (STMIK Amik Riau)
Rahmaddeni Rahmaddeni (STMIK Amik Riau)



Article Info

Publish Date
14 Apr 2024

Abstract

AbstractThis journal examines the use of classification algorithms such as K-Nearest Neighbors (KNN), NaiveBayes, and Support Vector Machines (SVM) in providing loans to customers. This method is used toincrease the reliability and accuracy of the credit risk evaluation system. The experimentalmethodology involves a dataset containing variables related to credit history, income, and other riskfactors. The research results show that the KNN algorithm achieves a significant level of accuracy inidentifying customer risk profiles. On the other hand, Naive Bayes successfully handles data withdependencies between variables, and SVM provides consistent results in handling complex datasets.This research explores the benefits and drawbacks of each algorithm to help build a better decisionmaking system for customer lending.Keywords: KNN, Naïve Bayes, SVM, Customer Loans.

Copyrights © 2024






Journal Info

Abbrev

jisti

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Lembaga Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI) Universitas Lamappapoleonro adalah lembaga penerbitan jurnal untuk dosen Universitas Lamappapoleonro dan dosen diluar Universitas Lamappapoleonro yang memiliki disiplin ilmu komputer. Lembaga Jurnal Ilmiah JISTI didirikan pada ...