Gangguan pada jantung terus meningkat dan menjadi penyakit yang mematikan. Perlunya diagnosis secara dini terhadap penyakit ini, namun hal itu sangat sulit dilakukan. Hal ini dikarenakan kurangnya tenaga ahli medis yang terlatih dan sumber daya lain yang dibutuhkan untuk melakukan diagnosis dan perawatan yang tepat bagi pasien penyakit jantung. Proses evaluasi menggunakan hasil prediksi yang akurat terhadap resiko gagal jantung sangat membantu penderita dalam mencegah serangan jantung yang parah dan dapat meningkatkan angka keselamatan dari penderita penyakit ini. Diantara cara yang paling efektif dalam mengidentifikasi dan melakukan prediksi pada penyakit jantung adalah dengan pemanfaatan algoritma data mining. Penelitian ini bertujuan untuk membuat model terbaik untuk prediksi penyakit jantung menggunakan algoritma data mining Decision Tree (C4.5). Berdasarkan hasil penelitian yang telah selesai dilakukan, dapat diambil kesimpulan bahwa nilai akurasi terbaik diperoleh pada model prediksi yang menggunakan perbandingan data training dan data testing sebesar 90%:10% yang menghasilkan nilai akurasi sebesar 88,35%. Model prediksi ini diharapkan dapat menjadi alat pendukung dalam diagnosis penyakit jantung, sehingga dapat dilakukan pencegahan serangan jantung yang parah dan dapat meningkatkan persentase angka keselamatan bagi penderita.
Copyrights © 2023