Jurnal Matematika Sains dan Teknologi
Vol. 25 No. 1 (2024)

Application of Synthetic Minority Over-Sampling Technique (SMOTE) to Outlier Data for Probabilistic Neural Network (PNN)

Ramdan Hayati (Program Studi Statistika, Universitas Negeri Gorontalo, Bone Bolango 96119, Indonesia)
Isran Hasan (Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Gorontalo)
Novianita Achmad (Program Studi Matematika, Universitas Negeri Gorontalo, Bone Bolango 96119, Indonesia)



Article Info

Publish Date
31 Mar 2024

Abstract

One common model of Artificial Neural Network (ANN) used in classification tasks is the Probabilistic Neural Network (PNN). PNN is an algorithm that utilizes probability functions, eliminating the necessity for a large dataset during its development process. In this research, the best model parameters were initially determined using the sigma parameter and Kernel Density Estimation (KDE) function on a randomly sampled dataset employing the Stratified Random Sampling (SRS) method. The optimal sigma parameter obtained from this process is 0.075, with a Gaussian KDE function. The data used in this study is related to direct marketing campaigns (phone calls) from Portuguese banking institutions collected by S ́ergio. Subsequently, PNN is applied to this dataset to determine its Accuracy and F1-Score values. The results indicate an accuracy rate of 87.117% and an F1-Score of 92.755%. Following this, Synthetic Minority Over-Sampling Technique (SMOTE) is applied to the dataset to balance the data. PNN is then implemented on the oversampled data, and in this phase, an evaluation of the Accuracy and F1-Score values is conducted, resulting in respective figures of 93.437% and 93.511%.

Copyrights © 2024






Journal Info

Abbrev

JMST

Publisher

Subject

Agriculture, Biological Sciences & Forestry Mathematics Other

Description

Merupakan media informasi dan komunikasi para praktisi, peneliti, dan akademisi yang berkecimpung dan menaruh minat serta perhatian pada pengembangan Matematika, ilmu pengetahuan dan teknologi. Diterbitkan oleh Lembaga Penelitian dan Pengabdian kepada Masyarakat, Universitas ...