Komunikasi Fisika Indonesia
Vol 21, No 2 (2024)

Random forest algorithm for precision dose prediction in brain cancer radiotherapy

Luqyana Adha Azwat (Department of Physics, University of Indonesia, Depok, Indonesia)
Prawito Prajitno (Department of Physics, University of Indonesia, Depok, Indonesia)
Dwi Seno Kuncoro Sihono (Department of Physics, University of Indonesia, Depok, Indonesia)
Dewa Ngurah Yudhi Persada (Department of Radiotherapy, MRCCC Siloam Semanggi, Jakarta, Indonesia)



Article Info

Publish Date
02 Aug 2024

Abstract

Improving dose optimization during clinical planning using the treatment planning system for radiotherapy patients is crucial, yet executing this process can be time-consuming and reliant on the expertise of medical physicists. This research focuses on dose prediction employing machine learning for the planning target volume (PTV) and organ at risk (OAR) in cases of brain cancer treated with the volumetric modulated arc therapy planning technique. Utilizing DICOM planning data from brain cancer cases, this study utilizes extracted radiomic and dosiomic values as inputs and outputs for the research, employing a random forest algorithm model. Evaluation of the model reveals its effectiveness in predicting doses for PTV in brain cancer and OAR, with predicted homogeneity index and conformity index values of 0.14 ± 0.04 and 0.95 ± 0.01, respectively, compared to clinical values of 0.14 ± 0.13 and 0.94 ± 0.13. Thus, the random forest model demonstrates proficiency in predicting doses for brain cancer PTV and OAR, with an mean square error value of 0.017.

Copyrights © 2024






Journal Info

Abbrev

JKFI

Publisher

Subject

Earth & Planetary Sciences Electrical & Electronics Engineering Energy Materials Science & Nanotechnology Physics

Description

KFI mempublikasikan artikel hasil penelitian dan review pada bidang fisika, namun tidak terbatas, yang meliputi fisika murni, geofisika, plasma, optik dan fotonik, instrumentasi, dan elektronika, dan fisika terapan (aplikasi ...