Limits: Journal of Mathematics and Its Applications
Vol 21, No 1 (2024)

Dekomposisi H-Super Anti Ajaib Atas Graf C_n ⊳_o S_n

Aditya Putra Pratama (Institut Teknologi Kalimantan)
Winarni Winarni (Institut Teknologi Kalimantan)
Tiara Uni Raudyna (Institut Teknologi Kalimantan)



Article Info

Publish Date
08 Apr 2024

Abstract

The concept of an H-Magic decomposition of a graph G is formed based on the concept of decomposition and the concept of labeling a graph. The set A={H_1,H_2,…,H_k } subgraphs of graph G is a decomposition of G if ⋃_(1≤i≤k)▒H_i =G and E(H_i )∩E(H_j )=∅  for i≠j. If every subgraph H_i which is the result of the decomposition of graph G is isomorphic to a subgraph H of G, then ={H_1,H_2,…,H_k } is an H-decomposition of G. Graph G is said to be H-Magic decomposition, if there is a bijective mapping :V(G)∪E(G)→{1,2,…,|V(G)|+|E(G)|} such that the total weight of the vertices and edges for each subgraph H_i is constant. If the total labels of vertices and edges for each subgraph H_i form an arithmetic progression with a difference of each weight of subgraph is one, then graph G is said to be H-Anti Magic decomposition. In this study, the H-Super Anti Magic decomposition of the graph C_n  ⊳_o  S_n is investigated. First, we investigate the characteristics of the graph C_n ⊳_o S_n along with the selected subgraphs. Next, based on the selected subgraph, a labeling pattern is formed on the graph C_n ⊳_o S_n such that the total weight of each subgraph forms an arithmetic sequence with the difference is one. From the labeling pattern, a bijective labeling function is formed using an arithmetic sequence approach. Based on the labeling function, it is shown that the subgraphs of C_n ⊳_o S_n are an H-decomposition of C_n ⊳_o S_n. The final result of this research is the graph C_n  ⊳_o  S_n contains the H-Super Anti Magic decomposition with magic constant 〖w_n (H〗_i)=〖2n〗^3+〖4n〗^2+3n+2+i for 1 ≤i<n, and 〖w_n (H〗_i)=〖2n〗^3+〖4n〗^2+3n+2  for i=n, where n≥3, n∈N.

Copyrights © 2024






Journal Info

Abbrev

limits

Publisher

Subject

Mathematics

Description

Limits: Journal of Mathematics and Its Applications merupakan jurnal yang diterbitkan oleh Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia. Limits menerima makalah hasil riset di semua bidang Matematika, terutama bidang Analisis, ...