Konstelasi: Konvergensi Teknologi dan Sistem Informasi
Vol. 4 No. 1 (2024): Juni 2024

Analisis Sentimen Pengguna Media Sosial X terhadap Perubahan Harga Bitcoin: Pendekatan Machine Learning

Joshua Evan Savero (Program Studi Teknik Informatika, Universitas Palangka Raya)
Viktor Handrianus Pranatawijaya (Program Studi Teknik Informatika, Universitas Palangka Raya)
Efrans Christian (Program Studi Teknik Informatika, Universitas Palangka Raya)



Article Info

Publish Date
27 Jun 2024

Abstract

Media sosial X menjadi gudang data yang dapat dimanfaatkan untuk memperoleh wawasan mengenai sentimen publik dan potensi yang berdampak pada harga cryptocurrency. Dalam beberapa tahun terakhir, bitcoin menjadi pusat perhatian sebagai bentuk investasi yang menarik bagi para pelaku pasar.  Bitcoin (BTC) sering kali ditandai dengan tingkat volatilitas yang tinggi dan harganya menunjukkan kenaikan dan penurunan yang ekstrem dalam jangka waktu yang singkat. Dengan menganalisis tweet pengguna media sosial X, penelitian ini bertujuan untuk meneliti hubungan antara sentimen yang diungkapkan oleh pengguna media sosial X dan perubahan harga bitcoin. Data set yang digunakan dalam penelitian ini yaitu dataset pelatihan model yang terdapat di laman Kaggle dan dataset pengujian yang dikumpulkan dari tweet media sosial X berdasarkan tanggal terjadinya golden cross dan death cross. Data set akan melalui teknik preprocessing data, klasifikasi sentimen positif, negatif, dan netral menggunakan VADER. Pembangunan model menggunakan algoritma naïve bayes dan support vector machine. Hasil penelitian ini memperoleh model support vector machine memiliki kinerja terbaik terhadap keakuratan model dalam klasifikasi sentimen dengan accuracy sebesar 95.92%, ketepatan model dalam memprediksi nilai positif dengan tingkat precision sebesar 95.89%, tingkat usaha dalam menemukan informasi kembali dengan tingkat recall sebesar 95.92%, dan presentasi nilai bobot dari nilai precision dengan nilai recall pada f1-score sebesar 95.89%. Akan tetapi, dalam memprediksi sentimen lima dataset pengujian yang diberikan menggunakan model yang telah dilatih ditemukan algoritma naïve bayes memiliki persentase lebih tinggi yaitu 80% dalam memperoleh hasil yang sesuai antara sentimen positif untuk kondisi golden cross dan sentimen negatif untuk kondisi death cross. Social media X is a data warehouse that can be utilized to gain insight into public sentiment and its potential impact on cryptocurrency prices. In recent years, Bitcoin has become the center of attention as an attractive form of investment for market players. Bitcoin (BTC) is often characterized by high levels of volatility and its price exhibits extreme rises and falls over short periods of time. By analyzing the tweets of social media user X, this study aims to examine the relationship between the sentiment expressed by social media user X and changes in Bitcoin prices. The dataset used in this research is the model training dataset found on the Kaggle page and the testing dataset collected from X's social media tweets based on the dates of the golden cross and death cross. The dataset will go through data preprocessing techniques, classifying positive, negative and neutral sentiment using VADER. Model construction uses the Naïve Bayes algorithm and Support Vector Machine. The results of this research show that the Support Vector Machine model has the best performance regarding model accuracy in sentiment classification with an accuracy of 95.92%, model accuracy in predicting positive values ​​with a precision level of 95.89%, level of effort in finding information again with a recall rate of 95.92%, and presentation of the weighted value of the precision value with the recall value on the f1-score of 95.89%. However, in predicting the sentiment of the five test datasets provided using the trained model, it was found that the Naïve Bayes algorithm had a higher percentage, namely 80%, in obtaining results that matched positive sentiment for the golden cross condition and negative sentiment for the death cross condition.

Copyrights © 2024






Journal Info

Abbrev

konstelasi

Publisher

Subject

Computer Science & IT

Description

KONSTELASI: Konvergensi Teknologi dan Sistem Informasi invites local and international researchers to publish their papers in Bahasa Indonesia with the following scopes, yet the topics are not limited to: Sistem Informasi Teknik Informatika Industri Teknik Sosial dan Humaniora Pendidikan Ilmu ...