(JELIKU) Jurnal Elektronik Ilmu Komputer Udayana
Vol 12 No 4 (2024): JELIKU Volume 12 No 4, May 2024

Ekstraksi Fitur Dengan Convolutional Neural Network Dan Rekomendasi Fashion Menggunakan Algoritma K-Nearest Neighbours

I Gede Teguh Permana (Teguh)
Ida Bagus Gede Dwidasmara (Udayana University)
Made Agung Raharja (Udayana University)
I Wayan Santiyasa (Udayana University)



Article Info

Publish Date
05 May 2024

Abstract

Pesatnya pertumbuhan industri fashion pada platform e-commerce sehingga fashion dapat diperoleh dengan mudah oleh berbagai segmentasi konsumen. Segmentasi konsumen dapat direpresentasikan disetiap search jenis fashion yang di inginkan, namun search jenis fashion pada e-commerce dilakukan dengan search berbasiskan kata kunci string sehingga segmentasi konsumen terhadap karakteristik fashion sulit dilakukan. Fashion merupakan object yang mudah dikenali secara visual sehingga search berbasiskan gambar sangat diperlukan pada platform e-commerce untuk memilih fashion berbasiskan segmentasi konsumen. Implementasi search berbasiskan gambar dapat dilakukan dengan rekomendasi fashion berbasiskan content dengan k-nearest neighbour (KNN) untuk melakukan pendekatan antara feature fashion terhadap input image fashion oleh konsumen dengan setiap feature data dilakukan ekstraksi feature kedalam convolution layer pada model convolutional neural network (CNN) dan histogram oriented gradient (HOG) dapat dievaluasi dengan top-n accuracy terhadap model Resnet, GoogLeNet, VGG, dan HOG dengan masing-masing performa model tersebut dibandingkan sehingga dapat diperoleh accuracy sebesar 93% pada GoogLeNet dengan KNN sebagai model terbaik dalam rekomendasi fashion. Adapun pendekatan antara feature fashion dilakukan berbasiskan hasil label dari proses classification ke dalam convolution dan fully connected layer pada convolutional neural network (CNN) dapat dievaluasi dengan evaluation matrices terhadap model Resnet, GoogLeNet, VGG dengan masing-masing performa model tersebut dibandingkan sehingga dapat diperoleh nilai accuracy sebesar 99%, precision sebesar 100%, recall 99%, f1-score 99% pada VGG sebagai model terbaik untuk identifikasi jenis fashion. Keywords: Fashion, Ekstraksi Feature, Sistem Rekomendasi, Arsitektur CNN, HOG, KNN, Evaluation Matrices, Top-n accuracy

Copyrights © 2024






Journal Info

Abbrev

JLK

Publisher

Subject

Computer Science & IT

Description

Aim and Scope: JELIKU publishes original papers in the field of computer science, but not limited to, the following scope: Computer Science, Computer Engineering, and Informatics Computer Architecture Parallel and Distributed Computer Computer Network Embedded System Human—Computer Interaction ...