Forests hold vital ecological significance, and the ability to accurately classify tree species is integral to conservation and management practices. This research investigates the application of machine learning techniques to airborne Light Detection and Ranging (LiDAR) data for the multi-class classification of tree species, specifically Alder, Aspen, Birch, Fir, Pine, Spruce, and Tilia. High-density LiDAR data from varied forest landscapes were subjected to a rigorous preprocessing and noise reduction protocol, followed by feature extraction to discern structural characteristics indicative of species identity. We assessed the performance of six machine learning models: Logistic Regression, Decision Tree, Random Forest, Support Vector Classifier (SVC), k-Nearest Neighbors (KNN), and Gradient Boosting. The analysis was based on metrics of accuracy, precision, recall, and F1 score. Logistic Regression and Random Forest models outperformed others, achieving accuracies of 0.81, precision of 0.80, recall of 0.81, and an F1 score of 0.80. In contrast, the KNN algorithm had the lowest accuracy of 0.60, precision and recall of 0.60, and an F1 score of 0.59. These results demonstrate the robustness of Logistic Regression and Random Forest for classifying complex LiDAR datasets. The study underscores the potential of these models to support ecological monitoring, enhance forest management, and aid in biodiversity conservation. Future research directions include the fusion of LiDAR data with other environmental variables, application of deep learning for improved feature extraction, and validation of the models across broader species and geographical ranges. This research marks a significant step towards leveraging advanced machine learning to interpret and utilize LiDAR data for environmental and ecological applications.
Copyrights © 2024