Face recognition is one of the most important areas in artificial intelligence and image processing, with wide applications from attendance system security to human-computer interaction. This study aims to overcome the difficulties in classifying student faces in an academic environment by applying and comparing centroid and geometric mean methods. Student face data was collected and processed through conversion to grayscale, pixel intensity normalization, and statistical analysis using both methods. The results showed that both methods had the same performance with 70% accuracy, 75% precision, 60% recall, and 66.67% F1-score. The application of this method can improve the efficiency and accuracy of attendance management and security in the campus environment, especially for institutions with limited resources.
Copyrights © 2024