Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 8 No 4 (2024): August 2024

Improved Backpropagation Using Genetic Algorithm for Prediction of Anomalies and Data Unavailability

Widi Nurcahyo, Gunadi (Unknown)
Akbari Wafridh (Unknown)
Yuhandri (Unknown)



Article Info

Publish Date
04 Aug 2024

Abstract

Anomalies and data unavailability are significant challenges in conducting surveys, affecting the validity, reliability, and accuracy of analysis results. Various methods address these issues, including the Backpropagation Neural Network (BPNN) for data prediction. However, BPNN can get stuck in local minima, resulting in suboptimal error values. To enhance BPNN's effectiveness, this study integrates Genetic Algorithm (GA) optimization, forming the BPGA method. GA is effective in finding optimal parameter solutions and improving prediction accuracy. This research uses data from the 2022 National Socio-Economic Survey (Susenas) in Solok District to compare the prediction performance of BPNN, Multiple Imputation (MI), and BPGA methods. The comparison involves training the models with a subset of the data and testing their predictions on a separate subset. The BPGA method demonstrates superior accuracy, with the lowest mean squared error (MSE) and highest average accuracy, outperforming both BPNN and MI methods.

Copyrights © 2024






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...