Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 8 No 4 (2024): August 2024

Comparing Correlation-Based Feature Selection and Symmetrical Uncertainty for Student Dropout Prediction

Haryono Setiadi (Unknown)
Larasati, Indah Paksi (Unknown)
Esti Suryani (Unknown)
Wardani, Dewi Wisnu (Unknown)
Wardani, Hasan Dwi Cahyono (Unknown)
Ardhi Wijayanto (Unknown)



Article Info

Publish Date
26 Aug 2024

Abstract

Predicting student dropout is essential for universities dealing with high attrition rates. This study compares two feature selection (FS) methods—correlation-based feature selection (CFS) and symmetrical uncertainty (SU)—in educational data mining for dropout prediction. We evaluate these methods using three classification algorithms: decision tree (DT), support vector machine (SVM), and naive Bayes (NB). Results show that SU outperforms CFS overall, with SVM achieving the highest accuracy (98.16%) when combined with SU Moreover, this study identifies total credits in the fourth semester, cumulative GPA, gender, and student domicile as key predictors of student dropout. This study shows how using feature selection methods can improve the accuracy of predicting student dropout, helping educational institutions retain students better.

Copyrights © 2024






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...