Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 8 No 4 (2024): August 2024

Advanced Earthquake Magnitude Prediction Using Regression and Convolutional Recurrent Neural Networks

Id Hadiana, Asep (Unknown)
Muhammad Sukma, Rifaz (Unknown)
Krishna Putra, Eddie (Unknown)



Article Info

Publish Date
29 Aug 2024

Abstract

Earthquake magnitude prediction is critical in seismology, with significant implications for disaster risk management and mitigation. This study presents a novel earthquake magnitude prediction model by integrating regression analysis with Convolutional Recurrent Neural Networks (CRNNs). It utilises Convolutional Neural Networks (CNNs) for spatial feature extraction from 2-dimensional seismic signal images and Long Short-Term Memory (LSTM) networks to capture temporal dependencies. The innovative model architecture incorporates residual connections and specialised regression techniques for sequential data. Validated against a comprehensive seismic dataset, the model achieves a Mean Squared Error (MSE) of 0.1909 and a Root Mean Squared Error (RMSE) of 0.4369, with a coefficient of determination of 0.79772. These metrics, alongside a correlation coefficient of 0.8980, demonstrate the model's accuracy and consistency in predicting earthquake magnitudes, establishing its potential for enhancing seismic risk assessment and informing early warning systems.

Copyrights © 2024






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...