Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 8 No 4 (2024): August 2024

The Effect of Resampling Techniques on Model Performance Classification of Maternal Health Risks

Nia Mauliza (Unknown)
Aisha Shakila Iedwan (Unknown)
Yoga Pristyanto (Unknown)
Anggit Dwi Hartanto (Unknown)
Arif Nur Rohman (Unknown)



Article Info

Publish Date
19 Aug 2024

Abstract

Indonesia's maternal mortality rate was the second highest in ASEAN, reflecting the problem of class imbalance in maternal health data. This research aimed to improve prediction accuracy in the classification of pregnant women's diseases through the application of various resampling methods. The methods used in this research included Synthetic Minority Over-sampling Technique (SMOTE), SMOTE-Edited Nearest Neighbor (SMOTE-ENN), Adaptive Synthetic Sampling (ADASYN), and ADASYN-ENN, using five classification algorithms: Decision Tree, K-Nearest Neighbor (KNN), Naïve Bayes, Random Forest, and Support Vector Machine (SVM). Performance evaluation was carried out using accuracy, precision, recall, and F1-score metrics to determine the best method and algorithm. The results showed that the SMOTE-ENN and ADASYN-ENN methods significantly improved the model's performance in predicting maternal disease. Random Forest and Decision Tree algorithms showed the best results in terms of accuracy and consistency. These findings provided practical guidance for the application of resampling techniques in the classification of pregnant women's health data, which could contribute to improving the quality of maternal health services in Indonesia.

Copyrights © 2024






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...