Jurnal Tekinkom (Teknik Informasi dan Komputer)
Vol 6 No 2 (2023)

PERBANDINGAN ALGORITMA C5.0 DAN K-MEANS CLUSTERING UNTUK MEMPREDIKSI KEPUASAN MAHASISWA TERHADAP KINERJA DOSEN UNIVERSITAS PRIMA INDONESIA

Jefri Syah Putra Laoli (Universitas Prima Indonesia)
Sadarman Zebua (Universitas Prima Indonesia)
Novanius Lahagu (Universitas Prima Indonesia)
Delima Sitanggang (Universitas Prima Indonesia)
Evta Indra (Universitas Prima Indonesia)



Article Info

Publish Date
28 Dec 2023

Abstract

Data mining is an attempt to dig up valuable and useful information on very large databases. Data mining is an operation that uses certain techniques or methods to look for a pattern or different form in a selected data. The technique used in this study is using data mining with the C5.0 and K-Means methods. The purpose of this study was to determine student satisfaction by using and comparing the accuracy of the C5.0 and K-Means clustering algorithms in predicting student satisfaction on lecturer performance at Universita Prima Indonesia, Faculty of Science and Technology. The results of research using the C5.0 Algorithm method where the accuracy value obtained is 90.90% (Very Satisfied) while the accuracy value is 9.10% (Not Satisfied). The K-Means Clustering method gives quite good results in classifying data, more than 75% of respondents feel (Very Satisfied) while less than 25% feel (Not Satisfied) from the teaching given by lecturers at Universitas Prima Indonesia.

Copyrights © 2023






Journal Info

Abbrev

Tekinkom

Publisher

Subject

Computer Science & IT

Description

Jurnal TEKINKOM merupakan jurnal yang dimaksudkan sebagai media terbitan kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai isu Ilmu - ilmu komputer dan sistem informasi, seperti : Pemrograman Jaringan, Jaringan Komputer, Teknik Komputer, Ilmu Komputer/Informatika, Sistem ...