ESTIMASI: Journal of Statistics and Its Application
Vol. 5, No. 1, Januari, 2024 : Estimasi

Mengatasi Overdispersi Menggunakan Regresi Binomial Negatif dengan Penaksir Maksimum Likelihood pada Kasus Demam Berdarah di Kota Makassar

Fadil, Muhammad (Unknown)
Raupong, Raupong (Unknown)
Ilyas, Nirwan (Unknown)



Article Info

Publish Date
29 Jan 2024

Abstract

The basic assumption in Poisson regression is that the mean value is the same as the variance value, which is called equidispersion. However, in some cases, this assumption is not met. A variance value that is greater than the average is called overdispersion and is called underdispersion if the variance value is smaller than the average value. So the Poisson regression model is no longer suitable for modeling this type of data because it will produce biased parameter estimates, therefore a negative binomial regression model is used. The research results show that estimating the parameters of the negative binomial regression model uses the maximum likelihood estimation method and then continues with the Newton-Raphson iteration method. The results obtained show that the negative binomial regression model overcomes the overdispersion that occurs in data on the number of dengue fever cases in Makassar City with the model  and an AIC value of 236.06647. The negative binomial regression model produces many models and then the best model with the smallest AIC criteria is selected.

Copyrights © 2024






Journal Info

Abbrev

ESTIMASI

Publisher

Subject

Mathematics

Description

ESTIMASI: Journal of Statistics and Its Application, is a journal published by the Department of Statistics, Faculty of Mathematics and Natural Sciences, Hasanuddin University. ESTIMASI is a peer – reviewed journal with the online submission system for the dissemination of statistics and its ...