KOMPUTIKA - Jurnal Sistem Komputer
Vol. 13 No. 1 (2024): Komputika: Jurnal Sistem Komputer

Pemodelan Clustering Ward, K-Means, Diana, dan PAM dengan PCA untuk Karakterisasi Kemiskinan Indonesia Tahun 2021

Izzuddin, Kautsar Hilmi (Unknown)
Wijayanto, Arie Wahyu (Unknown)



Article Info

Publish Date
01 Apr 2024

Abstract

Poverty is a serious and quite complex problem. Poverty is influenced across sectors from various factors. Poverty grouping can be done for planning and evaluating poverty programs. Cluster analysis using the ward, k-means, diana, and PAM methods can be used to group provinces in Indonesia based on six poverty indicators, namely the percentage of poor people (P0), poverty depth index (P1), poverty severity index (P2), Open Unemployment Rate (TPT), Literacy Rate (AMH), and Average Years of Schooling (RLS). Based on the evaluation of the model, the best cluster model was obtained using the ward approach with Principal Component Analysis (PCA) analysis. PCA is proven to be able to maximize the performance of clustering models. The cluster ward model forms five optimal clusters with provinces with very low to very high poverty rates.

Copyrights © 2024






Journal Info

Abbrev

komputika

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

Jurnal Ilmiah KOMPUTIKA adalah wadah informasi berupa hasil penelitian, studi kepustakaan, gagasan, aplikasi teori dan kajian analisis kritis di bidang kelimuan bidang Sistem ...