Building of Informatics, Technology and Science
Vol 6 No 1 (2024): June 2024

Optimizing Quantum Neural Networks for Predicting the Effectiveness of Drug Compounds as Corrosion Inhibitors

Mawaddah, Lubna (Unknown)
Rosyid, Muhammad Reesa (Unknown)
Santosa, Akbar Priyo (Unknown)
Akrom, Muhamad (Unknown)



Article Info

Publish Date
26 Jun 2024

Abstract

Corrosion, caused by electrochemical reactions in corrosive environments, can degrade the quality and lifespan of materials, potentially leading to significant losses in various industrial sectors. One common strategy to reduce corrosion rates is by using corrosion inhibitors. A significant challenge in this field is the time-consuming and costly process of testing new corrosion inhibitors in the laboratory. Consequently, there is a need for more efficient and cost-effective methods to predict the effectiveness of potential corrosion inhibitors using machine learning techniques. This research addresses this problem by applying a quantum machine learning (QML) approach with quantum neural network (QNN) algorithms to evaluate the effectiveness of drug compounds as corrosion inhibitors. The study aims to optimize QNN models by investigating three different quantum circuit configurations to identify the most effective design. The results showed that Model-01, consisting of three layers, demonstrated the best performance with an MSE of 38.81, an RMSE of 6.23, and an MAE of 6.19, along with the shortest training time of 32 seconds, indicating an optimal balance between complexity and generalizability. Overall, this QML approach provides new insights into the predictive ability of QNN models in assessing the effectiveness of drug compounds as corrosion inhibitors, demonstrating the potential of quantum computing to enhance predictive accuracy and efficiency in investigating anti-corrosion materials

Copyrights © 2024






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...