Building of Informatics, Technology and Science
Vol 6 No 2 (2024): September 2024

Multi-aspect Sentiment Analysis of Shopee Application Reviews using RNN Method and Query Expansion Ranking

Novitasari, Ariqoh (Unknown)
Sibaroni, Yuliant (Unknown)
Puspandari, Diyas (Unknown)



Article Info

Publish Date
09 Sep 2024

Abstract

Online shopping using e-commerce is a common activity society does in this digital era. Shopee is one of the well-known e-commerce in Indonesia. There are a lot of e-commerce platforms that can easily be accessed through mobile applications like Google Play Store. Users are allowed to review and rate the application they have downloaded. The reviews from the users become an opportunity for e-commerce companies to advance their performances and services. To enhance the understandability of user reviews, a system that can efficiently analyze the sentiment is needed. This study aims to design and establish a system that can perform sentiment analysis on the selected aspects. Sentiment classification is implemented by using the Recurrent Neural Network (RNN) algorithm and Query Expansion Ranking feature selection to classify Shopee application reviews into two classes, which are positive and negative. Feature selection is used to reduce less useful features so that the classification model conducts the classification process optimally and more efficiently. In conclusion, the evaluation results based on an 80:20 data split ratio indicate that the RNN achieves the highest accuracy of 95% in the delivery cost aspect, 93% in the delivery speed aspect, and 86% in the application access aspect.

Copyrights © 2024






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...