Jurnal Komtekinfo
Vol. 11 No. 4 (2024): Komtekinfo

Penerapan Algoritma Haar Cascade Clasifier dan Computer Neural Network Sebagai Presensi Karyawan

Karseno, Doni (Unknown)
Yuhandri (Unknown)
Ramadhanu, Agung (Unknown)



Article Info

Publish Date
24 Sep 2024

Abstract

Sistem pengenalan wajah merupakan program komputer yang secara otomatis dapat mendeteksi gambar digital atau video untuk mengidentifikasi atau mengautentikasi seseorang secara otomatis. Kesulitan dalam masalah pengenalan wajah sebagian besar disebabkan oleh kurangnya keberhasilan dalam menemukan fitur gambar tersebut. Pengenalan objek banyak digunakan oleh para pelaku industri untuk keperluan inspeksi, registrasi atau manipulasi. Penelitian ini bertujuan untuk menidentifikasi wajah pada masing – masing karyawan. Metode yang digunakan dalam penelitian ini adalah Haar Cascade Classifier (HCC) sebagai pendeteksi wajah dan metode Convolutional Neural Network (CNN) untuk proses identifikasi wajah. Proses pengenalan wajah ini dapat digunakan untuk mengidentifikasi masing – masing karyawan. Sehingga dalam melakukan presensi digital tidak ada kecurangan lagi yang dilakukan oleh karyawan. Dalam penelitian ini data yang diambil adalah data di Institut Teknologi dan Bisnis Indragiri. Algoritma Haar Cascade Classifier menjadi metode yang dapat digunakan dalam proses pengenalan polah wajah manusia. Sedangkan Convolutional Neural Network merupakan metode untuk mengidentifikasi serta mengklasifikasi hasil dari metode Haar Cascade Classifier sebagai tahap awal. Dalam hal pengklasifikasian image, metode Convolutional Neural Network merupakan metode yang dapat digunakan untuk pengklasifikasian wajah. Arsitektur Convolutional Neural Network yang digunakan dalam penelitian ini adalah alexnet. Dataset dari ImageNet lebih dari 14 juta gambar yang dikategrikan dalam ribuan kelas. Convolutional Neural Network memiliki arsitektur yang terinspirasi oleh struktur visual sistem manusia dan sangat efektif untuk tugas-tugas pengenalan gambar dan klasifikasi. Kesimpulan dari hasil penilitan ini yaitu dengan menggabungkan metode Haar Cascade Classifier dan Convolutional Neural Network dapat mempercepat proses pengenalan klasifikasi suatu objek wajah. Penelitian ini menggunakan kumpulan dataset wajah yang beragam, mencakup variasi sudut pandang, ekspresi, dan kondisi pencahayaan. Data yang digunakan terdiri dari seluruh karyawan yang memiliki 106 data wajah. Model CNN kemudian dilatih menggunakan data latih sebesar 85% dari keseluruhan data. Setelah model dilatih, selanjutnya dilakukan evaluasi model CNN melalui beberapa metrik evaluasi. Dari hasil evaluasi diperoleh tingkat akurasi yang baik sebesar 91% Hasil dari penelitian ini dapat digunakan untuk media presensi digital berbasis pengenalan wajah pada karyawan Institut Teknologi Dan Bisnis Indragiri.

Copyrights © 2024






Journal Info

Abbrev

komtekinfo

Publisher

Subject

Computer Science & IT

Description

Software Engineering, Multimedia, Artificial intelligence, Data Mining, Knowledge Database System, Computer network, Information Systems, Robotic, Cloud Computing, Computer ...