Jurnal Komtekinfo
Vol. 11 No. 4 (2024): Komtekinfo

Penerapan Algoritma Apriori dalam Menentukan Pola Penjualan Barang

Jufri, Fikri Ramadhan (Unknown)
Defit, Sarjon (Unknown)
Nurcahyo, Gunadi Widi (Unknown)



Article Info

Publish Date
24 Sep 2024

Abstract

Data mining yaitu proses pengumpulan informasi yang bermanfaat dari suatu data yang diolah sehingga dapat menghasilkan informasi yang berguna bagi perusahaan. Algoritma Apriori merupakan algoritma dalam data mining yang digunakan untuk menemukan asosiasi atau hubungan antara item dalam kumpulan data transaksi. Algoritma ini memfokuskan pada penemuan aturan asosiasi, yang menyatakan bahwa jika sebuah kelompok item tertentu muncul dalam transaksi, maka item lainnya juga cenderung muncul dalam transaksi yang sama. Algoritma Apriori bekerja dengan cara mengidentifikasi item-item yang sering muncul bersama (itemset) dalam transaksi dan kemudian membangun aturan asosiasi berdasarkan itemset ini. Market basket analysis atau analisis keranjang belanja merupakan sebuah analisis terhadap perilaku pelanggan dalam melakukan kegiatan transaksi jual beli. Analisis keranjang belanja menghasilkan temuan asosiasi atau keterhubungan satu barang dengan barang lainnya, dimana barang-barang tersebut berada dalam satu keranjang pelanggan. Tujuan penelitian ini untuk menentukan pola penjualan pada Aciak mart, dengan menerapkan algoritma apriori dapat mengetahui barang-barang mana saja yang dibeli persamaan oleh pelanggan Aciak mart dengan nilai minimum support sebesar 6% dan nilai minimum confidence sebesar 15% yang menjadi acuan. Hasil aturan asosiasi yang didapat adalah Jika membeli AQUA 600ML maka juga membeli SAMPOERNA MILD 16 dengan nilai support sebesar 10,00 % dan nilai confidence sebesar 15,15 %, Jika membeli SAMPOERNA MILD 16 maka juga membeli SURYA 16 dengan nilai support sebesar 10,00 % dan nilai confidence sebesar 35,71 %, Jika membeli SAMPOERNA MILD 16 maka juga membeli FOODRTD GOLDA DOLCE LATTE 200 ML dengan nilai support sebesar 8,00 % dan nilai confidence sebesar 28,57 %. Berdasarkan hasil pembahasan dapat disimpulkan algoritma apriori dapat menentukan barang mana saja yang dibeli secara bersamaan oleh pelanggan dengan nilai confidence tertinggi sebesar 35,71 % untuk pembelian SAMPOERNA MILD 16 dan SURYA 16. Kata kunci: Data mining, algoritma apriori, market basket analysis, nilai minimum support, nilai minimum confidence

Copyrights © 2024






Journal Info

Abbrev

komtekinfo

Publisher

Subject

Computer Science & IT

Description

Software Engineering, Multimedia, Artificial intelligence, Data Mining, Knowledge Database System, Computer network, Information Systems, Robotic, Cloud Computing, Computer ...