Recursive Journal of Informatics
Vol 2 No 1 (2024): March 2024

Hyperparameter Tuning of Long Short-Term Memory Model for Clickbait Classification in News Headlines

Satriawan, Grace Yudha (Unknown)
Prasetiyo, Budi (Unknown)



Article Info

Publish Date
31 Mar 2024

Abstract

Abstract. The information available on the internet nowadays is diverse and moves very quickly. Information is becoming easier to obtain by the general public with the numerous online media outlets, including news portals that provide up-to-date information insights. Various news portals earn revenue from advertising using pay-per-click methods that encourage article writers to use clickbait techniques to attract visitors. However, the negative effects of clickbait include a decrease in journalism quality and the spread of hoaxes. This problem can be prevented by using text classification to classify clickbait in news titles. One method that can be used for text classification is a neural network. Artificial neural networks use algorithms that can independently adjust input coefficient weights. This makes this algorithm highly effective for modeling non-linear statistical data. The artificial neural network algorithm, especially the Long Short-Term Memory (LSTM), has been widely used in various natural language processing fields with satisfying results, including text classification. To improve the performance of the neural network model, adjustments can be made to the model's hyperparameters. Hyperparameters are parameters that cannot be obtained through data and must be defined before the training process. In this research, the Long Short-Term Memory (LSTM) model was used in clickbait classification in news titles. Sixteen neural network models were trained with different hyperparameter configurations for each model. Hyperparameter tuning was carried out using the random search algorithm. The dataset used was the CLICK-ID dataset published by William & Sari, 2020[1], with a total of 15,000 annotated data. The research results show that the developed LSTM model has a validation accuracy of 0.8030, higher than William & Sari's research, and a validation loss of 0.4876. Using this model, researchers were able to classify clickbait in news titles with fairly good accuracy. Purpose: The study was to develop and evaluate a LSTM model with hyperparameter tuning for clickbait classification on news headlines. The thesis also aims to compare the performance of simple LSTM and bidirectional LSTM for this task. Methods: This study uses CLICK-ID dataset and applies different text preprocessing techniques. The dataset later was used to build and train 16 LSTM models with different hyperparameters and evaluates them using validation accuracy and loss. This study uses random search for hyperparameter tuning. Result: The results of the study show that the best model for clickbait classification on news headlines is a bidirectional LSTM model with one layer, 64 units, 0.2 dropout rate, and 0.001 learning rate. This model achieves a validation accuracy of 0.8030 and a validation loss of 0.4876. The results also show that hyperparameter tuning using random search can improve the performance of the LSTM models by avoiding zero probabilities and finding the optimal values for the hyperparameters. Novelty: This study compares and analyzes the different preprocessing methods on text and the different configurations of the models to find the best model for clickbait classification on news headlines. The study also uses hyperparameter tuning to tune the model into the best model and finding the optimal values for the hyperparameters.

Copyrights © 2024






Journal Info

Abbrev

rji

Publisher

Subject

Computer Science & IT

Description

Recursive Journal of Informatics is a journal that publishes manuscripts of scientific research papers related to Informatics. The scope of research can be from the theory and scientific applications as well as the novelty of related knowledge ...