Jurnal Teknologi Dan Sistem Informasi Bisnis
Vol 6 No 2 (2024): April 2024

Analisa Performa Algoritma Random Forest & Logistic Regression Dalam Sistem Credit Scoring

Billy Riantono, Bernadus (Unknown)
Andarsyah, Roni (Unknown)



Article Info

Publish Date
09 Apr 2024

Abstract

The rapid advancement of technology, particularly in the field of Artificial Intelligence (AI), has had a significant impact across various industries. One increasingly popular implementation is ChatGPT, enabling more intuitive human-computer interactions. Moreover, AI has transformed the landscape of the financial sector, particularly in Credit Scoring. Using Supervised Machine Learning, algorithms like Random Forest and Logistic Regression are employed to enhance accuracy and efficiency in the Credit Scoring process. However, comparing the accuracy between these two algorithms remains a question. Therefore, this research aims to compare the accuracy levels of Random Forest and Logistic Regression in the context of Credit Scoring. From the research that have been conducted got result Random Forest given better AUC score on 0.90 than Logistic Regression which only got 0.89.

Copyrights © 2024






Journal Info

Abbrev

jteksis

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Jurnal Teknologi dan Sistem Informasi Bisnis merupakan Jurnal yang diterbitkan oleh Prodi Sistem Informasi Universitas Dharma Andalas untuk berbagai kalangan yang mempunyai perhatian terhadap perkembangan teknologi komputer, baik dalam pengertian luas maupun khusus dalam bidang-bidang tertentu yang ...