Mechatronics, Electrical Power, and Vehicular Technology
Vol 15, No 1 (2024)

An experimental investigation of an energy regeneration suspension

Tho, Nguyen Huu (Unknown)
Danh, Le Thanh (Unknown)



Article Info

Publish Date
12 Jul 2024

Abstract

Energy absorbed from road bumps in traditional suspensions is dissipated as heat. An energy regeneration suspension (ERS) has the capability to capture and store this energy in batteries. It has the potential to be used in several categories of vehicles, encompassing cars, trucks, buses, and even trains. ERS technology shows significant promise in enhancing the fuel efficiency and environmental sustainability of vehicles. In this paper, the design of an ERS that converts kinetic energy into electrical energy is presented. The primary objective is to identify key design parameters that result in high magnetic intensity levels in the air gap of the ERS model. Optimizing these parameters is essential to maximize the advantages of ERS while minimizing any drawbacks. The study investigates the impact of different magnetic permeability materials in the ERS model using ANSYS software. A test rig is established based on the analysis results to assess the energy regeneration efficiency of the ERS model under various excitations. Experimental results demonstrate that ERS models with higher permeability inner sleeves exhibit superior energy regeneration efficiency.

Copyrights © 2024






Journal Info

Abbrev

mev

Publisher

Subject

Electrical & Electronics Engineering

Description

Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular ...