Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 8 No. 1 (2024): Articles Research Volume 8 Issue 1, January 2024

Stunting Disease Classification Using Multi-Layer Perceptron Algorithm with GridSearchCV

Cahyani, Indah Ardhia (Unknown)
Ashuri, Putri Intan (Unknown)
Aditya, Christian Sri Kusuma (Unknown)



Article Info

Publish Date
01 Jan 2024

Abstract

Stunting is a growth and development disorder caused by malnutrition characterized by a child's height less than the standard deviation set by WHO. In 2022, stunting cases in Indonesia are considered a high prevalence rate, reaching 21.6%. There are several factors that can cause stunting in children, namely maternal and antenatal care factors, home environment factors, breastfeeding practices, and feeding factors during toddlerhood. There are several impacts that occur when children are stunted, namely increased risk of child mortality, susceptibility to illness, impaired brain development, physical disorders and metabolic disorders.   Currently, deep learning has been widely used for disease classification and prediction, one of the deep learning methods is Multi-Layer Perceptron (MLP). The purpose of this research is to classify stunting disease using a deep learning method, namely MLP. The dataset used consists of 8 attributes, namely gender, age, birth weight, birth length, body weight, body length, breastfeeding and stunting with a total of 10,000 records. The encoding process is carried out to convert categorical data into numeric attributes of gender, breastfeeding, and stunting.  This research produces a higher accuracy value than previous research which used the C4.5 algorithm with an accuracy of 61.82%, whereas in this study using MLP which was integrated with the GridSearchCV hyperparameter it obtained an accuracy of 82.37%. This proves that the MLP method is successful in classifying stunting compared to previous research algorithms.

Copyrights © 2024






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...