Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024

Analysis of TF-IDF and TF-RF Feature Extraction on Product Review Sentiment

Harmandini, Keisha Priya (Unknown)
L, Kemas Muslim (Unknown)



Article Info

Publish Date
31 Mar 2024

Abstract

Sentiment analysis of product reviews is critical in understanding customer views and satisfaction, especially in the context of e-commerce applications. A marketplace provides channels where users can submit reviews of the products they purchase. However, due to the large number of reviews in a marketplace, analyzing them is no longer feasible to be performed manually. This research proposes a machine learning implementation to perform sentiment analysis on product reviews. In this research, the product review dataset on Shopee marketplace is used for sentiment analysis by comparing TF-IDF and TF-RF feature extraction using the SVM algorithm with stages of dataset, labeling, feature extraction and accuracy results. The importance of the comparison between TF-IDF and TF-RF feature extraction in this research is related to the need to evaluate and determine which feature extraction method is most effective in increasing the accuracy of sentiment analysis. TF-IDF and TF-RF are two methods commonly used in text analysis, and a comparison of their performance can provide deep insight into the effectiveness of each in the context of product sentiment analysis.Thus, through this comparison, this research aims to determine the best approach that can provide the highest accuracy results, so that the results can serve as a guide for further research. Based on the evaluation, the highest accuracy value is achieved at 92.87% by using TF-IDF and SVM classifiers which outperformed previous research.

Copyrights © 2024






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...