Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024

Application of the Arima Method to Prediction Maximum Rainfall at Central Java Climatological Station

Ruslana, Zauyik Nana (Unknown)
Prihatin, Rudi Setyo (Unknown)
Sulistiyowati, Sulistiyowati (Unknown)
Nugroho, Kristiawan (Unknown)



Article Info

Publish Date
02 Oct 2024

Abstract

The existence of extreme weather that is difficult to predict results in frequent hydrometeorological disasters. ARIMA is a prediction method that can capture trend patterns, seasonal cycles, and random fluctuations that are often found in patterned data. Although many samples of rain data collection points are needed to produce denser data, one point can be considered to represent an area that is not too large, such as Semarang City. This method is quite accurate for short-term forecasts, with the results of monthly maximum rainfall forecasts in 2023 showing varying MAPE values. For the 12-month forecast, prediction results range from fair to very accurate. The 7-month forecast also shows decent to very accurate results. However, the 5-month forecast shows less accurate results. This shows that ARIMA can be a useful method in forecasting monthly maximum rainfall, especially during the dry season. The application of ARIMA in Semarang City can help in planning hydrometeorological disaster mitigation, considering that the Semarang City area often experiences extreme weather that is difficult to predict. Thus, the use of ARIMA can provide significant benefits in preparing for and reducing the impact of hydrometeorological disasters in the region. In addition, with more accurate forecasts, the government and society can take preventative steps earlier, such as better water management, creating an adequate drainage system, and increasing public awareness of the threat of disasters. Therefore, this research emphasizes the importance of using reliable prediction methods such as ARIMA to improve preparedness in dealing with hydrometeorological disasters.

Copyrights © 2024






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...